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1. Introduction

The radiation dose received from high energy galactic cosmic rays (GCR) is a limiting

factor in the design of long duration space flights and the building of lunar and martians

habitats. It is of vital importance to have an accurate understanding of the interactions of

GCR in order to assess the radiation environment that astronauts will be exposed to.

Most previous studies have concentrated on strong interaction processes in GCR. However

there are also very large effects due to electromagnetic (EM) interactions. EM studies have

previously concentrated on single photon exchange leading to nucleon removal. However two-

photon processes also occur which lead to the production of lepton pairs with cross sections

of the order of kilobar_s. Also at high energy the stopping powers from these processes can

exceed that due to atomic collisions. Thus even though very high energy GCR are not as

abundant as lower energy GCR they still must be considered due to the fact that the cross

sections and stopping powers are so much larger than normal.

In this report we describe our first efforts at understanding these EM production processes

due to two-photon collisions. More specifically, we shall consider particle production

processes in relativistic heavy ion collisions through two-photon exchange. Examples of

this broad category of processes include:

Z1Z2 _ ZiZ2l+l -

ZI Z 2 ---, Zl Z2s+ s -

Z1Z 2 ---, ZIZ2V+V -

Z1 Z2 --, Z 1 Z2 H 0

(1.1a)

(1.1b)

(1.1c)

(1.1d)

in which l+l - denote charged leptons, s+s - denote charged scalars, V+V - denote charged

vector particles, and H 0 is a neutral Higgs scalar.

We shall limit our consideration to cases in which the colliding nuclei are identical, so

that Z1 = Z2 = Z. An important Feynman diagram that contributes to (1.1a), (1.1b), and

(1.1c) is shown in the following figure (fig. 1).



For process(1.1d), an important diagram is shown in figure 2, in which the triangular

loop receives contributions from quarks, leptons and W gauge bosons.

These processes are important for the following reasons (ref. 1).

(1) These kinds of processes become increasingly important as the energy of the colliding

nuclei increases, since their cross sections increase with energy. Thus their contributions

to the stopping power of high energy ions also become more important at high energies.

(2) These processes can be channels for production of charged particles, e.g., l+l -, W+W -,

and neutral particles such as Higgs bosons, and various mesons.

(3) For high Z nuclei these processes can be used for studying non-perturbative effects in the

electromagnetic interaction.

(4) They must be taken into account in the study of strong interaction effects in heavy ion

collisions since they can lead to important background events, and must be taken into

account also in the design of experimental set up, since they can lead to significant beam

loss.

Section 2 of this report gives a brief survey of a few major approaches used in the

calculations for these processes. Section 3 examines some results of our calculations. We

then point out briefly some open questions and make a few concluding remarks in Section 4.

The purpose of this report is threefold. (1) It gives a simple, elementary introduction to

this field. (2) It provides sample calculations for illustrating the approach we use. (3) The

background and techniques developed here can be used as a general base for launching further

and more specialized studies into this field.

While it is not our main goal here to obtain new and original results, some of our results

are possibly new, and are as yet not available in the literature.

2. A Brief Survey of Different Approaches

In this section, we briefly list a few major approaches used in calculating cross sections

for the kind of processes we are interested in. The first approach has been discussed in
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references2 and 3. In this approach, each colliding nucleus is replaced by an equivalent

spectrum of photons. Each nucleus is considered to move in a straight line, unperturbed by

the interaction. At a distance b from the line of motion of a nucleus, a spectrum of photons

is generated, whose frequency distribution has the form:

N(w,b) = Z2w 1K02(x)] (2.1a)
-r_ j

where

wb
x - (2.1b)

"),v

K0, K1 are modified Bessel functions, see reference 4, Sections 3.7 and 15.4.

The cross section for this process can be written as an integral of a photon distribution

function multiplied by a photon-photon cross section.

where

a-/dwl

F(wl, w2) - 27r bldbl b2db2 dCN(wl, bl)
mia rain

x N(w2, b2)_(b r - R1 - R2)

(2.3a)

(2.2b)

and

bl=

where Wl and w2 are the frequencies of the photons emitted by the nuclei, bl and b2 are the

distances of the nuclei from the point where the photons collide. Details can be found in

Appendix A. Various differential cross sections can be derived from these equations. First

da where W is the mass of the produced charged particle pair. We note thatwe consider

W 2 - 4_lW 2. Hence we can equate in (2.2a)

a-/dwl-'_-I / dW2F('zlW2 , a-r- r Wl, , (2.3a)
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and

da 1
dWlF Wl ¢7"r'y Wl • (2.3b)

dW 2 = _ Wl 4Wl ] '

Next we define the probability for producing a particle pair P(b) at impact parameter b by

where

1 da

P(b) -- 27rb db (2.4a)

da dwl

db = / / -_2 F(wl'W2)a'_"r(Wl'W2)6(b-b'), (2.4b)-
in which it is understood that the 6 function is to be taken inside the triple integral which

defines F(wl, w2). The correctness of (2.4) can be checked by integrating both sides of (2.4b)

over all values of the impact parameter b, which then yields (2.3a) for the total cross section.

P(b) is the probability for the events in which two nuclei collide with each other at impact

parameter b, producing a charged particle pair in the process. A quantity L, known as the

two-photon luminosity function is defined by (see ref. 2, eqs. (1), (9), and (10))

So

dW2 F W 2

IdL 1 dwl F Wl, (2.5b)= '

do" dL - 2-
= )'

and

(2.5c)

where we have used the fact that a_.r(Wl, w2) actually depends only on W 2 so that we can

write

a-y-y(Wl, w2) -- a_-y(W2). (2.6)

It is our view that equation (10) of reference 2 is in error, and have duly corrected the error

in the above definition of the luminosity function L. For the stopping power calculation, we

use the formula

dx = p _ (Wl + w2)F(wl, w2)a_- r(Wl, w2), (2.7)



where p is the number of nuclei per unit volume.

The second type of approach has been applied to a related set of purely quantum

electrodynamic (QED) processes: e+e - ---* e+e-l+l -. This process can be calculated

within the framework of QED. Cross sections can be obtained numerically by Monte-Carlo

integration. Approximate formulas for total cross sections have also been obtained. See

references 5 and 6. This kind of approach can be modified to apply to relativistic nucleus-

nucleus collisions, provided one takes into account properly the effects of nuclear currents.

See reference 7, Section II.

In an approach closely related to this second type of approach, Bottcher and Strayer

treated the colliding nuclei classically, by regarding them as classical charge distributions.

The remaining amplitude for the production of charged particle pair is then obtained in the

framework of QED. Thus for the case of the reaction Z1Z2 "-* Z1Z2l+l - the total cross

section can be written in the form (ref. 8, eq. (10), p. 38):

_(47ra)4 / d3p-d3p+d2kl.J-¢2(2zr)S2p-02p+0

X E fi(P-'S-) f'lid__ _l-ml _/2
8--_S- b

+ ,/2¢__ - mz fi vtp+,s+) (2.s)

where v denotes the velocity of one of the nuclei in the center of momentum frame, p_ and

p+ are the momenta of the produced leptons, s- and s+ are their polarizations, fi(p-, s_)

and v(p+, s+) are the lepton spinors, kl and k2 are the momenta of the exchanged photons,

and fl and f2 are the nuclear form factors. For any 4-vector A, the slash notation 4[ is

defined by

= Z (2.9)
#=0

where _ are the Dirac _/-matrices. See for instance reference 9, Appendix 2, pages 355-361.
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3. Results

In this report, we adopt the approach discussed in references 2 and 3. As samples of our

calculations, we present a number of results for the process 2°8pb2°8pb ---. 2°8pb2°8pb l+l -,

and some others. Most of our calculations are done for colliding beam energies of 3400 Gev

and 8000 Gev per nucleon. The impact parameter b varies over the range from 10 fm to

1000 fro. The mass of l+l - varies from a threshold equal to 2m I up to about 1000 Gev. In

Appendix B we list the photon-photon cross sections for the following processes:

TY "_ I+l- (3.1a)

"77 -"* s + s- (3.1b)

"Tq' --+ V +V- (3.1c)

_q, _ H 0 (3.1d)

The derivations of some of these cross sections are also given there. By using (2.2)-

(2.6), we can then obtain various luminosity functions, differential and total cross sections,

probabilities, and stopping powers.

Table 1 shows the total cross section for ZZ ---+ ZZe+e -. We compare our numerical

results based on (2.1) and (2.2), with the results based on the Racah formula (ref. 5, eq. (F.1),

p. 276)

where

28
a = 277rm2 (/3 _ Al 2 + Bl + C)

A_6.36, B_15.7, C_-13.8,

l=ln  m-2

Zi, Pi, and rni, i = 1, 2 are the charges, momenta, and masses of the colliding nuclei.

(3.2)
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Table I

Colliding
nuclei

Z

Incident

energy/nucleon

E (GeV)

Total cross section (kilobarn)

Calculated

from formulaOur results

O-16 3400.0 0.2241 x 10 -1 0.2216 x 10 -1

8000.0 0.3052 x 10 -1 0.3020 x 10 -1

A1-27 3400.0 0.1563 0.1545
8000.0 0.2128 0.2106

Fe-56 3400.0 0.2500 x I01 0.2473 x 101

8000.0 0.3404 x 101 0.3370 x 101

Pb-208 3400.0 0.2473 x 103 0.2445 x 103

8000.0 0.3366 x 103 0.3333 x 103

Table 2 shows the corresponding stopping power calculations. The energies of the incident

particles are given for both the case of colliding beams and also the case of an incident beam

colliding with a fixed target.

Table 2

Incident energy/nucleon

E (Gev, colliding beams)

0.9636

0.1367 x 101

0.2704 x 101

3400.0

8000.0

Incident energy/nucleon

E (Gev, fixed target)

1.039

3.036

14.64

0.2462 x i08

0.1363 × 109

lx[" dE'_

(Gev fm 2)

0.2129 x 10 -2

0.4585 x 102

0.6909 x 103

0.2032 x 1011

0.1182 x 1012

(Mev/cm)

7.02 xl0 -4

1.51 x 101

2.28 xl02

6.70 xl09

3.90 xl01°

For Pb-208, p _. 3.30 x 1022 cm -3



Note that the stopping power for e+e- production increases with energy. So as the

energy of the colliding nuclei increases, the contribution of this process to stopping power

also becomes more important. In contrast, the contribution to stopping power from atomic

collision and other processes first increases with energy, and then decreases. Hence, as energy

increases, eventually these other contributions become less important. To put our results

into perspective, we note that for Fe-56 at a kinetic energy of 1 Gev, its stopping power in

water due to atomic collision is around 104 Mev/cm, see reference 10, figure 2.15, p. 74.

In figure 3, we give plots of Tx;2 dL,_ _ as a function of W in different ranges of W. The

dL by ada dL by multiplying _ _'_/crossdifferential cross section _ can be obtained from

section as in (2.5c).

Figures 4a-d show plots of a_.y(W 2) for the reactions V_/ --+ l+l -, "7"7 ---* s+s -,

"7'7 ---, V+V - , and ",/'y ---. H °.

Figure 5 shows plots of P(b) for the reaction 2°8pb208pb ---* 2°8pb208pb e+e - at different

energies.

Figure 6 presents plots of the total cross section for the process 208pb208pb

208pb208pb H O.

We have compared some of our results with the published results of Papageorgiu and

Baur, and found good agreement. In the following, we give a sample of such comparisons.
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Table 3

Incident

energy/

nucleon

(colliding

beams)

E = 3400.0

Gev

E = 8000.0

Gev

W2 dL

W (Gev) W/,v/s Our result

100.0 0.7070 x 10 -4 0.3152 x 103 0.33 x 103

141.4 0.1000 x 10 -4 0.8630 x 102 0.90 x 102

212.2 0.1500 x 10 -3 0.1206 x 102 0.13 x 102

282.9 0.1990 x 101 0.21 x 1010.2000 x 10 -3

0.5709 × 10 -4 0.6129 x 10319.0

Papageorgiu's

result

0.70 x 103

280.0 0.8413 x 10-4 0.1708 x 103 0.20 x 103

370.0 0.1112 x 10-3 0.5444 x 102 0.60 x 102

460.0 0.1382 x 10-3 0.1881 x 102 0.20 x 102

550.0 0.1653 x 10-3 0.6866 x 101 0.70 x 101

640.0 0.1923 x 10-3 0.2606 x I01 0.28 x I01

9



Table 4

Incident energy/nucleon (colliding beams) E = 3755.6 Gev

W(Gev)

da (fro2 Gev-2)_-_

Our result Baur's result

0.1200 x 10 -2 0.6188 x 1013 0.62 x I013

0.1414 xlO -2 0.4923 xlO 13 0.48 xlO 13

0.1732 xlO -2 0.2777 xlO 13 0.28 x1013

0.2000 xlO -2 0.1714 xlO 13 0.17 ×1013

0.2200 xlO -2 0.1222 xlO 13 0.12 ×1013

0.2400 x 10 -2 0.8894 x 1012 0.92 x 1012

0.2600 x 10 -2 0.6607 x 1012 0.69 × 1012

0.3000 × 10 -2 0.3846 x 1012 0.40 × 1012

Papageorgiu and Baur's results were taken from appropriate graphs in their papers (ref.

2, fig. 3; and ref. 3, fig. 9).

Cross sections are expected to scale roughly as Z12Z22. For our case Z1 = Z2 = Z. So in

order to obtain the corresponding cross sections, luminosity function, or stopping power for

different nuclei, one can simply multiply the results we have here by a factor Z_Z_ Thus
(z=82)4

if one wants the results for Al Fe collision, one can multiply the results presented in this

section by the conversion factor 132562 The different nuclear sizes are expected to affect--_-.

the results also. However for a rough order of magnitude estimate, such a simple scaling is

expected to be reasonably accurate.
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4. Open Questions and Conclusions

For small values of b, and rnl, such as m I = me, P(b) exceeds 1. This signifies the

breakdown of perturbation theory. The question as to how to extract meaningful results

from theory is under active investigation. See reference 11. In our simple approach,

we have regarded the nuclei as point charges. By using form factors for the nuclei, the

problem of violation of unitarity is expected to be somewhat ameliorated. However this

problem still needs to be addressed, because for high Z nuclei, the coupling constant for

the electromagnetic interaction is of the order Ze, even with nuclear form factor taken into

account, which may therefore still lead to a breakdown of the perturbative approach to cross-

section calculation. In a collaboration with Mirek Fatyga of Brookhaven National Laboratory

(BNL), we shall investigate lepton pair production and neutral meson production (such as

e0, r/0) in high energy heavy ion collisions. In these processes, we shall look for possible

deviation in the measured rates or cross sections from values calculated by perturbation

theory.

In many studies of the type of processes considered here, various approximations are

used. We have mentioned the equivalent photon approximation, and the semi-classical

approximation. Also, in the approach of references 2 and 3, which we have adopted in

this report, the effect due to phase coherence of the electromagnetic field generated by the

nuclei has not been properly taken into account. One needs to investigate how valid these

approximations are and what the regions of validity are for them.

When one is primarily interested in the kind of electromagnetic processes discussed

here, one needs to be able to estimate reliably the background due to strong interaction.

Furthermore, there are other electromagnetic processes that also need to be studied, in

addition to the ones we have looked at, even though the ones we have considered are among

the most important.

In summary, we have given a brief introduction to two-photon exchange processes in

high energy heavy ion collisions. Our calculations are based on an approach discussed in
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references 2 and 3. In view of the significance of this class of processes, and the many open

questions that remain to be answered, we believe that further study in these areas will be

valuable, not only for gaining a better understanding into these processes themselves, but

also for studies and experiments in strong interaction physics.

In the following Appendices, we discuss the derivation of some of the formulas we have

used. We look at the equivalent photon approximation in Appendix A and show how this is

applied to the two-photon exchange processes in relativistic nucleus-nucleus collisions. Then

in Appendix B, derivations are given for some -y-y cross sections. Appendix C provides a

derivation of the fermion contribution to the process H 0 _ "77. In Appendix D, we look at

the details of how certain integrals encountered in our calculations are evaluated. Finally

Appendix E gives a simple derivation of the formula (2.7) used for calculating stopping

power.
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Appendix A. Equivalent Photon Approximation

Consider a charge q moving along the x-axis. The effect of this charge on another charge

located a distance b from the x-axis can be approximately calculated as follows.

By first considering the electromagnetic (EM) field due to q in its own rest frame, and

then making a Lorentz transformation to the laboratory frame, it is straight forward to show

that the electromagnetic field due to q is given by

E 1 = -qv-rt(b 2 + _/2v2t2)-3/2

E2 -- qb_/(b 2 + "r2v2t2) -3/2

v E v _,2v2t2)_3/2B3=- 2=q- bY( b2+
C C

E3=B1 =B2=0

t = 0 corresponds to the instant when q passes through the origin.

(A.la)

(A.ID)

(A.lc)

(A.ld)

When v _ c, the

components E2 and B3 can be thought of as the components of a pulse of plane-polarized

EM wave travelling along x. The energy flux of this EM field is given by the Poynting vector

,_= 4--._.E'x .B. (A.2)

So ignoring E1 for the moment, S points along x, and its magnitude is

c (A.3)ISl=

in which we have made the approximation _ _ 1. Over a unit area, the flow of energy is

/? ]$[ dt =- E2(t) dr. (A.4a)
O0 47r oo

Using Parseval's theorem, we therefore have

/? /?[S[ dt =- [E2(w)] 2 dw, (A.4b)
oo 4zr oo

where E2 is the Fourier transform (FT) of E2, defined by

/?1 f(t) e -i_°t dt (A.5)
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Hence the quantity S2(w), defined by

C

g2(_) = _ Ik2(_)l2, (A.6)

can be thought of as the energy per unit frequency per unit area of the EM field at frequency

w generated by the moving charge q. To obtain the photon number per unit frequency per

unit area at frequency w, we set n2(w) = _S2(w), since each photon has energy _z. For

the function n2(w), the dependence on the distance b is implicit. To make the dependence

on b explicit, we can write instead

From (A.lb), we obtain

n2(_,b)= _g2(_).

C)_2(_) = _ _2 _ j

Hence

(A.7)

(A.8)

(A.9)

The remaining component El, of the EM field can be complemented by a magnetic field so

that they can be considered to form a pulse of plane polarized EM wave. The same treatment

can be applied to these components, so that the energy spectrum can be similarly obtained

as before. The result is

C

,gl(O.,)= _--_I.EI(,,.,)I2= e 1 1 (b)22- (w_) 241r 7 2 v 2 7r
(A.IO)

The effect of this pulse is roughly _ that of the first pulse. So at high velocity, the second

pulse can be neglected when compared with the first pulse.

In conventional treatment, the two pulses are simply added together, so that the effect

due to the original moving charge q is replaced by a spectrum of photons whose number

density is simply the sum of the number densities from the two pulses discussed above. Thus

14



one set

n(w,b) = _ S2(0J) + SI(_) - _J47rv2 _ k,_/v]

e 2
After identifying q = Ze, _ = a, and noting

(A.11)

the photon energy spectrum

N(w,b)-- Sl(W) + ,_2(w) + Sl(-W) + S2(-w)

Z2e21(c)2 (w )217r2c "_ K 2 (wb) 1 2 (wb) ]_÷-_ Ko "_

Z2a

= h __ (c)2 (_vv)2 [K2 (_vb) + 1 2

Application of the Equivalent Photon Approximation to Two-Photon

Exchange Processes

When two nuclei Z1 and Z 2 collide with each other, their EM interactions can be studied

in terms of the EM interaction of the spectra of photons emitted by the nuclei. The situation

can be pictured as in figure A.2.

The two photons _/1 and "_2 are considered as colliding head-on with each other. Taking

a cross-sectional view perpendicular to the direction of motion of the nuclei, the situation

can be pictured as shown in figure A.3.

From our previous discussion, the number of photons emitted by Z1 at P, whose

frequencies are between w 1 and Wl + dwl, is n(wl,bl)dw 1 bl dbl d¢l, where n(wl,bl)

is defined by (A.11). Similarly, the number of photons incident at P emitted by Z2 is

n(w2, b2)dw2 b2 db2 d¢2. Therefore the EM cross section for the collision of Z1 and Z2

through two-photon exchange can be written as

= f n(wl, bl) n(w2, b2) a._._(Wl,w2)bl dbl d¢l b2 db2 d¢2
(A.14)

× 0(b- R1 - R2)dwl dw2

15
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in which R1 and R2 stand for the nuclear radii of Z 1 and Z2, and the 0-function takes into

account that when b < R1 + R2, the two nuclei overlap, and the EM interaction is swamped

by the strong interaction of the nuclei, and so one needs to restrict b to values > R1 + R2 if

one wants to look only at EM interactions.

Since b = (512+b 2 - 2blb2 cos ¢) 1/2, the integration f d¢l d¢2 in (A.14) can be simplified

if one integrates over ¢1 and converts the integration over ¢2 into an integration over ¢:

f f

So (A.14) can be rewritten as

2zr / n(wl, bl) n(w2, b2) ¢r-r-r(Wl, w2)0(b - R1 - R2)(7
(A.16)

x bl dbl b2 db2 de dwl dw2.

If one now substitutes for n(wi, bi), i = 1, 2, using (A.11), one obtains (2.2).

Concerning the cutoff for bl and b2, we observe the following. (A.14) involves an

approximation, which consists of replacing the virtual photons emitted by Z1 and Z2 with

real photons ")'1 and "12. This approximation is valid only if the masses of the virtual photons

A1 and A2 are small compared to the mass of the produced system W. (See ref. 5, Sections 6.1

and 6.7). By the uncertainty relations, Ai _ _, i = 1, 2. Hence in order for the approximation

in (A.13) to be valid, we must have Ai < W, or _ < W. Therefore,

1 (A.17)

If bi does not satisfy (A.17), the contribution to the cross section is small, and is generally

considered negligible. See reference 5, Sections 6.1 and 6.2, and reference 12, Sections 7,

7.1-7.3. Another consideration for the values of bi is that since we are interested in the

effects of each nucleus acting as a single entity rather than as a collection of nucleons acting

independently of each other, i.e., we are interested in the coherent effects of the collection of

nucleons, we need to restrict

bi > Ri. (A.18)
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So for reactions in which the Comptonwavelengthof the producedsystem is smaller than

the nuclear radii, i.e., _ < R/, we can set the minimum of bi by

bimin = R/. (A.19)

This is the case for #+#- and v+v - pair function.

Compton wavelength of an electron 1 is >R/. So we set the minimum of bi by

2

bimin = _.

But for e+e - pair production, the

(A.20)

Hence in general we set

bimin = max , _

Note that when W = 2me in (A.20), bimin = 1 which is the cut off generally accepted in
m e )

the literature for e+e - pair production (see e.g., reference 3, Section 3). With bimin defined

by (A.19) and (A.20), our calculations for e+e - pair production show good agreement with

the results from the approximate formula (3.2), as is shown in Table 1.
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Appendix B

First we listthe cross sectionsfor the processesin (3.1):77 -"+ l+l-, "7"7-'+s+s-, "['7--*

V+V -, and "y'y-. H °. (See ref.2, eqs. (14)-(17),pp. 159, 160; and ref.13, eqs. (10),(11),

p. 95.)

a('y'y-* l+l-) = _ 2(1+Yi-2

-(1 +y_)1_-_-_], (B.la)

(B.Ib)

_('Y'Y_ v+v-)= _ V_ I

where

Yl -

+ _tv + 3t - 3tv(l - 2iv)
1

4m 2 4m ]

W2, Ys = W2,

(B.lc)

(B.2a)

'_ A= ,If- 4t,.
tv = _-_,

W is the total energy of the two photons in the center of momentum frame.

a(77_ H 0) = 87r2F _(W 2 =m 2)
mH

where F can be written as (ref. 12, eq. (10), p. 95)

°_cFm_ izl_,
r= 8_.3 V/_

and I in turn has the form (ref.13, eqn. (II),p. 95)

(B.2b)

(B.3)

(B.4)

q l

(B.5a)
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1
where for A >

1
and for )_ < :I

Iq :-- 3 [2_q + _q(4)_q -- 1)f(_q)] ,

I l = 2_l + AI(4A l - 1)f(Al),

1

Iw = 3XW(1 - 2Aw)f(Aw) - 3AW - 2'

(B.5b)

(B.5c)

(B.5d)

f(A) = -2 arcsin , (B.6a)

f(A) = 5 In - -_- + irr ln--, (S.6b),7-

=7+ -A

The subscripts q, l, and W stand for quark, lepton and W-boson, respectively.

(B.6c)

m2 for i = q,l, W, (B.7)hi'- 2 '
m H

and mi are the rest masses of the coresponding particles, m H is the rest mass of H 0.

In the following, we give the derivations of the cross sections for the processes

"7"t "-'* s+ s -, (B.8)

"7"7_ l+l-. (B.9)

We also give a derivation of the relationship between a and F for the process

'7"7 _ H ° (B.10)

Derivation for 77 _ s +s-. The lagrangian for the system, including the EM interac-

tion, can be written as

/:EM = - + ieA_ 0 _ leA I_) ¢ - m2¢+¢
(B.11)
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in which ¢ denotesa scalarfield operator, A# denotes the photon field, # = 0, 1, 2, 3. We

use the convention that repeated indices are summed over, so that for example,

AuAU = AoA ° + A1 A1 + A2 A2 + A3 A3

= AoAo - A1A1 - A2A2 - AsA3.

(B.12a)

(S.12b)

This lagrangian can be separated into a free part, and an interaction part, so that

= ie (¢+ A _ 0¢£int
\

+ e 2 A_A_¢+¢.

0¢+ A_¢)
Ox_ (B.13)

To simplify notations, in this derivation, we are using m instead of ms to denote the mass

of the scalar particle. The S-matrix element that contributes to (B.8) can be written in the

form

< p_;p+[S (1) + S(2) I kl,el;k2, e2 > (B.14)

in which p± denotes the momenta of s ±, ki, e i are the momenta and polarization vectors of

the photons, i = 1, 2, and S (2) is defined by

8 (2)= i2 /T _int(Xl)_int (x2) d4zl d4x2, (B.15)

where T denotes the time-ordering operator. Contribution from S (2) can be represented by

the diagrams of Figures B.la and B.lb.

Using (B.13) and (B.15), and standard techniques of field theory, one obtains

< p-; p+[8(2)lkl, el; k2,e2 >

= ie2(2r)4(2p-o • 2p+o. 2k10" 2k20) -½ 12-2

X _4(p_ -bp+ -- k 1 - k2), (B.16)

where k - p_ - kl = k2 - p+, k' - p_ - k2 = kl - p+, f_ is the normalization volume, and

e denotes an infinitessimal quantity.
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Likewise S (1) is defined by

and

S (1) ---- i T /Lint(X ) d4k,
(B.17)

< p-; p+[S (1) [kl, el; k2, e2 > = ie2(2_r)4(2p-o. 2p+o. 2klo-2k20) -1/2

x _-/-2 2el "e2 64(p- + p+ - kl - k2). (B.18)

The diagram representing this matrix element is shown in figure B.2.

The total cross section is obtained by squaring (B.14), averaging over photon polarizations

el and e2, integrating over phase space, and finally dividing by the photon flux. Hence we

have

a = -_ < p_;p+
_1 ,_-2

x92x cx

S(1) + S (2)
2 d3p_d3p+kl, el; k2, e2 > (27r)6

(B.19)

in which To is the normalization time. Substituting (B.16) and (B.18) into (B.19), we obtain

f_To d3p -- d3p+ _3a = e4a 2 f(8) 64 (p_ + p+ -- kl - k+) (27r_4 (2_r)6 2cTo
% g %t

_ e 4 a2_4 f_r
-- (27r) 4 • 2(: • (271")6 (p2° -- m2)1/2 P-o2 Jo f(O) sin 0 dO x 27r. (B.20)

where

1 [ "(k+p-)e2.(p+ k)f(O) -- "_ Z _1 _ m2-+-
_I,_2

_2" ( kl "l-p--)_l" (P+ -- kt) + 2e I . _2 ]+
k r2 -- m 2 + ie J

2

, (B.21)

a -- (27r) 4 (2p-o. 2p+o. 2k10" 2k20) -½ _-2, (B.22)

and O is the angle between i_- and the z-axis, which is chosen to be along the direction of

kl. We shall work in the center of momentum frame of the two photons, and use the fact

that for real photons,
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_1"kl =_2"k2--0- (B.23)

After some algebraic manipulation, we obtain

1 2f(O) =/34sin40 (1 -/3 cos 0) 2 ÷ (1 - 13 cos 0)(1 +/3 cos O)

+2-2/32sin20 i-/3cosO ÷l+13cosO '

in which

P-o

i ]+ (1+ 3 cos e)2

(B.20) can be simplified by carrying out the integration over 0, so that

_0_ _ 1 +3f(0) sin 0 d0 = 4(2 -/32) + 2(32 4- 1)(/32 - 1) in _ ,

and hence

O" e4a2£/4 P2° /3 x 27r
(21r) 10.2c 2

[x 4(2 -/32) + 2(/32 + 1)(/32 _ 1)_ _ .

Using the definition of a in (B.22), we then obtain

I f14
e 4

(21r)Sgl-416p4_o (2_r) 10 x 2c
o"

+ 2(/3_ + 1)(/3_ - 1)_nll_--_

p_-o [x T x2_rx 4(2-/32)/3

(B.24)

(B.25)

(B.26)

(B.27a)

e 4 1 1
x2_'x

(21r) 2 16p2_o4c

•

+ 2(/32 + 1)(/32- 1)

(B.2To)

In the "natural units" in which one sets tt = c -- 1, this result can be written in the form

a= (47r)24p2o x27r (2-32)3+(/32+1)(/32-1)x_ln_ . (B.28)
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4m 2
In terms of the variables y - --W_ , W - p-o + p+o = 2p-o, we can write

o" = a 2 x _ x 2_" (1 + y) v/'i - y - (2 - y)y In + (B.29)

e 2
in which a -= _ is the fine structure constant. This result is the same as the one obtained

by Papageorgiu (ref. 2, eq. (15), p. 159).

Derivation for 77 _ l+l -. For this case the interaction lagrangian can be written in

the form

Lin t = --e _(x) _[(x)_(x), (B.30)

in which ¢(x) denotes the lepton field operator. _[(x) = A_(x)7 _ and 7/_, # = 0, 1, 2, 3, are

the Dirac 7-matrices. (See ref. 9, Appendix 2, p. 335-361.) ¢(z) = Ct(X)7o, where Ct(x)

is the hermitian conjugate of ¢(x). The second order term in the S-matrix is defined by

(B.15), with £tat(x) defined by (B.30). The initial and final states can be denoted as

i > = kl,el;k2,e2 >, (B.31a)

f > = p-,s-;p+,s+ >, (B.31b)

in which we have already defined kj, ej,j = 1, 2 as the photon momenta and polarization.

p±, s± are the momenta and spins of 1+ and l- respectively. Following the notations of

reference 9, appendix 2, we can write the S-matrix element < f S (2) li > as

where

< f S (2) i > = -e2a ft(p_,s_) ¢'1k 2 _rn2 +ie ¢_v(p+,s+)

j i(g' + m) ]+ f_(p_,s_) _2.k5[ _n_ie _1v(p+,s+) _4(p_ + p+ _ kl - k2),

k - p_ - k 1 = k 2 - p+, k' - p- - k 2 = kl - p+,

a -- (2_r) 4 (2p-o. 2p+o. 2klo" 2k20) -1/2f_-2,

(B.32)
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u(p_,s_) and v(p+,s+) are the spinor wave-functions associated with l- and l +. For

simplicity of notations, in this derivation we use m instead of m l to denote the mass of the

lepton. This S-matrix element can also be represented diagrammatically by Figures (B.la)

and (B.lb). The total cross section is given by a formula similar to (B.19):

O" ---

1 d3p_d3p+ 1zq,,2, (21r) 6 fl2 _c To" (B.33)

$_,8+

Performing the sum over the photon and lepton spins, we can write

"l,e2,
$-- ,$+

E e4a264(P- + p+ -- kl -- k2)_ {(k2 -- rn2 + i_)-2

x TrD¢_ + m) _1 i(]_ + m) _'2(ld+ - m) h(-i)(]_ + m) hJ

4- (k 2 - m 2 4- ie)-l(k r2 - rn 2 4- ie) -1 Tr [(id- 4- rn) f'l(k 4- rn) _2(/_+ - rn) _1(_' 4- rn) f'2]

+ (k 2 - rn 2 + ie)-l(k r2 - m 2 + ie) -1 Tr [(/__ + m) f'2(]_' + m) f'l(id+ - m) _'2(]_ + m) (1]

4- (kr2 - rn2 + ie)-2 Tr [(lt- + m) f/2(k' + m) (lO + - rn) f'l(J_'+m) f'2] } (B.34)

in which Tr denotes the trace operator. From (B.34), it can be seen that the sum in (B.34)

can be naturally divided into four terms:

T1 - Tr[(/t_ 4- m) h(_+m) h(id+ - m)f'2(]_ +m) h],

T2- Tr [(id-+ m) f'l(]_ + m) f'2(id+- m) f'l(]_' +m) f'2],

T3 = Tr [(id-+ m) f'2(]_' + m) _'l(id+- m) f'2(_ + m) _'1],

T4 -- Tr [(jd- + rn) f'2(_' + m) f'l(id+ - m) f'l(_' + rn) f'2]-

(B.35a)

(B.35b)

(B.35c)

(B.35d)
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Hence we can write

el,e2,
$_,S+

f S(2) 12 _To< i > -- e4a264(p- -4- p+ - kl - k2) (27r)4

x _ {(k 2 - m 2 + ie) -2 T 1 + (k 2 - m 2 -[- ie)-l(k¢2 - m 2 -t- ie) -1 (T2 -t- T3)

E1 ,e2

+ (k r2 - m 2 + ie)-2T4}. (B.36)

After some straight forward though tedious mathematics, one arrives at the following:

E T1 = 8k140(1 - f_ cos 8) 1 + k2--_o+ k2--_/J cos 8 +/33cos38 -8m 4, (B.37)
E1 ,e2

1 1
4 _ T2 -" 4 _ T3 = 8k40_2(1- c°s20)[1- _2(1 -cos20)] ,

el,e2 el,e2

(B.38)

1 ( m2 2m2 f_3 )_Sin 4 'E T4 = 8k40(1 + Z cos 8) 1 + k20 k20 f_ cos 8 - cos 3 8 (B.391
el,e2

where f_ - [fi-] From (B.33) and (B.36) we obtain
P--O"

cr = e4(27r)8(2k10)-4f1-4 _f_To f_3 1
(2_r) 4 (2_r) 6 2cTo

/{I m2 (k 2 m2 ie)_l (kr2 m 2× _ E[( k2 - + ie)-2T1 + - + - + ie) -1 (T 2 + T3)
el ,e2

+(k r2 - m 2 + ie)-2T4] }dZp_d3p+64(p- + p+ - k 1 - k2)

e 4 11 2 /{1 m2-- (2_r)2 16k140 _c/3klO x _ E[(k 2 - q- ie)-2rl
else2

+(k 2 - m 2 + ie)-l(k r2 _ m 2 + ie)-l(T2 + T3) + (k r2 _ m 2 + ie)-2T4] }

1

x _ sin 0 dO x 21r.
(B.40)

Now we use

k 2 - m 2 = -2k20(1 - D cos 8), (B.41)
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k r2 - m 2 = -2k120(1 + ;3cos 6), (B.42)

together with (B.37), (B.38), and (B.39) to arrive at

j_o_r 1 j_O_" 1_ (k2- m2+i_)-2T1sinedO= _ _ (ka - m: + i_)-_T4sine de
_I ,_2 el ,_2

(4 ;32_4_ 8 --+2 2+ [ ;32'
=-3 k120 -_0--120] _ _ k140 I-

(B.43)

_0 _r 1 Z (k2 - m2 4- ie)-l(k t2 - m 2 4- ie)-lT2 sin0 d9
E1 ,_2

j_0r 1 Z (k2 m2 -- m2= "_ - +ie)-l(k r2 +ie)-lT3sinO dO
E1,_2

4 ;32_ _(2 ;32)(1 2 1+ ;3= 8(1 - ;32) 4- 5 - - ;3 )In _ .

So from (B.43) and (B.44) we have

(B.44)

j_0_ 1 _[(k2 __ m2

el ,e2

4- (k r2 - m 2 4- ie)-2T4] sin 0 d8

-- --8(2 -- ;32) 4- _[2 4- 3(I -- ;32) _ (2 -- ;32) (I -- ;32)]In ]11----'---_"4-

=-8(l+y)+_ l+y-v In _+

4m 2 ;32.where y -- _ = 1 - Putting this into (B.40), we have

e4 1 1 [-(1 4- y) 4- _ (14- y - _)= (2_)216k1402_;3k2°×s 2

×'"_+ × T

[ ( I : 11]_ e4 1 --(1+ +2 1+ In 4-
(4,_)2w2 ×4,_ y),/i-- y Y- -i-

[ (--_-_x4_"-(14-Y)V/1-y4-2 14-y- In 1 + ,

4- ie)-2T 1 4- (k 2 - m 2 4- ie)-l(k 12 _ m 2 4- ie) -1 (T 2 4- T3)

(B.45)

(B.46)

in "natural" units. This result is the same as the one obtained by Papageorgiu (ref. 2,

eq. (14), p. 159).
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Derivation for 77 --* s°

s ° is a neutral scalar. Using Ps to denote the momentum of s °, the cross section for this

process can be written as

a= _= <psSkl,el;k2, e2> _f_x _cX_o' (B.47)
1, 2

in which S denotes the S-matrix. For the reverse decay process s ° ---, 77, the width F can

be written in the form

1 /_ I I 2d3kld3k2_2 (B.48)r = _ < kl,q;k2,e2S ps> _g
1,2

From conservation of momentum, we can write

< Ps Slkl,e;k2, e2 > = < ps[Tlkl, el;k2, e2 > _4(ps-kl-k2) (B.49)

From (B.47) and (B.49) we now have

a = _ _ < Ps T kl, el; k2, e2 > _so - kl0 - k20)
1,2

1 gl2 f_To

x (21r)3 2cTo (21r) 4 (B.50a)

1 a3 I [2-- 8c (2r) 7 E < Ps T kl, el; k2, e2 > 6(Pso -- 2kl) (B.50B)
fl _f2

In (B.50), we assume that we are working in the rest frame of s °. Likewise (B.48) can also

be rewritten in the form

I l 2k_2 "2 f_T°
r = --To1,2_ < kl, el; k2, e2 T Ps > _ x 4_ x (2_r)6 (2_r)4

i ii L2----_ k120 _ < kl,el;k2, e2 Tps > (8.51)
_I,_2

From time-reversal invariance, we know that

I I 12__, < kl,el;k2, e2 Tps > = <Ps T kl,el;k2, e2 > . (B.52)

_1,_2 _1, 2
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Therefore from (B.50) and (B.51) we now have

1
I (2_r)2r × -- 6(Pso - 2ki0).

= k2o

In the rest frame of s°,

(B.53)

1 o_2

a = (27r)2F7L- 6(ms2 -4k20) = °" r6(ms2 - s), (B.54)
t;10 _ts

in which s isthe square of the totalmomentum (kl + k2)2. For _,'y_ H ° in which H ° isa

neutral Higgs particle,r can be written in the form given by (B.4)-(B.7).
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Appendix C. Fermion Contribution to F(tt ° _ 7"Y).

In this appendix, we derive the Fermion contribution to the decay width of the decay of a

Higgs particle H ° _ "/'y. For this case the interaction lagrangian can be written as (ref. 14,

eqs. (22.58), (22.78), pp. 676, 682)

(e) _,(h) (C.la)/_int(X) -- Lin t (x) -}- _int (x),

where

(e) = (C.lb)£int(x) = q/¢/ $(x)¢f(x), L(h):x int_ /

el(x) is the fermion field operator, A_(x) the photon field operator, and r/(x) the scalar

Higgs field operator, qf denotes the charge of the fermion, and h f the coupling between the

Higgs scalar and the fermion. The process H ° --, 7"y is third order in the interaction, so that

the relevant term in the S-matrix is

/3[/ ]5'(3) = 3_ T _dnt(Xl)Lint(X2)f int(X3) d4xl d4x2 d4x3 (C.2)

The initial and final states can be denoted as

Ii > - IPh >, and If >" Ikl, el; k2, e2 >, (C.3)

in which Ph denotes the momentum of the Higgs scalar, kj, ej, j = 1, 2, are the momenta and

polarizations of the the photons.

We use mf and m H to denote the masses of the fermion and Higgs scalar. The width for

the process is given by

11/i
el _e2

2 d3kl d3k2 _2.< kl,el;k2, e21S(3)lPh > (21r16 (C.4)
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The S-matrix element can be represented by the diagrams:

Employing standard techniques of field theory, we find

< kl,el; k2, e2 [ S(3)Ip h > = -q_hf(2ph o • 2k10" 2k20) -1/2 _-3/2

X /d4pl{[(pl-kl)2-m}+ie]-lTr[(pl+m,)_1(_1- ]_l+mJ')_2(_1- ]_1-]_2+mf)]

4-[(])1- k2) 2 -'} 4-i,]-1 Tr [(_1-}-raf) _2(_1- ]_2 q-mr)_1(_1- ]_1- ]_2 .my.)]}

We can separate the two terms on the right hand side of (C.5) and let S (3) = S_ 3) + S_ 3),

so that

< kl, el; k2, e2[ S_ 3) Ph > ------q_hf(2Pho" 2klo" 2k20) -1/2 n-3/2_4(k1 + k2--Ph)

×/d4pl[(pl-kl)2-m}+i_]-I (p2-m_q-ie) -1

X [(Pl- kl- k2)2- m} + ie]-IT_3), (C.6a)

where

T_ 3) _ Tr [(_1 d- m s ) _1(_1-- _1 + m s ) _2(_1-- _1-- _2 + ms) ] , (C.6b)
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where

and

< kl,el; k2, e21 S_ 3) Ph > = -q_hf(2Pho" 2k10" 2k20) -1/2 f_-3/264(kl + k2 -Ph)

f _, [_1-_2_2- _ +_]-_[_-_ +_]-1
(c.7)

T_3)= Tr [(i#1 + rnf) f'2(l#l- #2 + mr) f'l(l#l- ]_1- #2 + mf)J.1 (C.8)

The evaluation of the matrix elements (C.6) and (C.7) are quite similar. So we need only

consider (C.6) in detail for illustration. By evaluating the trace in (C.6b), and using the fact

that in the center of momentum frame of the two photons,

and also

el" kl ----el" k2=e2" kl -'e2" k2 --0, (c.9)

kl2 = k 2 = 0, (C.10)

for real photons, we find

T_ 3) = 4mf(4pl • el Pl" e2 -- el" e2 p2) -k 8rnf el " e2 Pl • kl

+ 4m/(-h. k2 + m_)el "e2. (C.11)

(ref. 15, Section 3.2,Now we use a standard technique of Feynman parameterization

pp. 160-197).

___ ÷_-1[_1-_1/2-m2÷_1-1[/,1-_-_2_2-

where

m 2 + ie]

-1

(C.12a)

(C.12b)

31



p21 _Q2 - m} +_[x+ (kx+ k2):y+ ie

_ _Q2 _ m} + 2kl • k2y + ie. (C.12c)

Now (C.6) can be rewritten in the form

(3)
= -q_hf(2ph o • 2kx0. k20)-l/2_-3/264(k1 + k2 - Ph)< kl, ei;k2, e21S 1 [Ph >

x2 _ldx j_ol-Xdy/d4pl [(pl-Q)2q_ p21]-3T_3)" (C.13)

From (C.11) and (C.13), it is apparent that in order to evaluate (C.13) we need to compute

the following integrals:

;_y_ f dx dy d4pl P_lP_ [(Pl _Q)2+ p12] -3, (C.14)

I_-/dxdyd4pl_l[(Pl-Q)2-t-P21]-3, (C.15)

Io-/dxdyd4pl[(Pl-Q)2+O2J -3 (C.16)

These integrals can be computed using the method of dimensional regularization in which

one first computes the following integrals:

¢"(n) - f dz dv d_m _pr[(pl -Q)2 + p_]-a, (C.17)

Ir(n ) - /dx dy dnpl P_I [(Px- Q)2+ p2] -3, (C.18)

Io(n)- f a_dy_pl[(p_-Q)_ + d] -3, (C.19)

in which n is a real number, which in the final result is allowed to approach 4. Details of

this process is given in Appendix D.

From the results in Appendix D, we find

4P_lP_ - p21g_V .7r21 [gl_U(p2 _ Q2)+ 4Q_QU]

/d4pl[(pl _Q-)2:_1213 - --"2"P'_l ' (C.20)

f _ .-2Q.e,1 -
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and

Define

i d4p I 1 7r2 1 (C.22)

J1-Sd4pl[(pl-kl)2-m_+ie]-l(V_-m_+ie) -1

(C.23)

By using (C.9)-(C.12), (C.20)-(C.23), we find

1 1 [4mf(p2 Q2)°
+ 8mfQ. k 1 d- 4mf (--k 1 • k 2 -b m_)] el • e2. (C.24)

Using the definitions of Pl and Q in (C.11) and (C.12), we can simplify (C.24) to

J1 = -i7r2 2mr el "e2 fj01

m 2 rn 2

01-x 4y(1 - x - y) - 1 (C.25)dx dy y(1 - x- y) - A +ie'

The integral in (C.25) can be done after some changes of integration variables and applying

some techniques in complex analysis. The result is

rn 2

where for A- -_g > ¼,

and for A _ ¼,

J1 = --i7r2 2rnf e I • e2J0, (C.26)

J0 2 2(4A 1)/arcsin|__,_,//2r/lkl= - - , (C.27a)
L \V4A/J

7r2 1J0=2+(4A-1) --_-+

(C.27b)
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From (C.5), (C.6), (C.23) and (C.26) we have therefore

S (3) .< kl, el; k2, e21 1 ,-h > = -q} h f (2Ph o • 2k10- 2k20) -1/2 _-3/2J164 (kl + k2 - Ph)

= -q} h I (2Pho" 2k10" 2k20)-1/2 f]-3/264 (k 1 + k2 _ Ph)

× (-i_ ×2_i ×_,._ J0). (c.28)

It is straight forward to check that

< lci,el;k2,e21S_a)lp h > = < kl,_l;k2, e21S_3)lph >. (C.29)

Therefore using (C.3)-(C.8) and (C.28),

11/To4 F_,4q}h_(2pho.2k10.2k20)-1_-3_4(kl+ k2- ph)
_.1 ,_-2

12To d3kld3k2gZ 2
x lr4 x 4m_ x (_1" _2)2 IJol2 x --

(2_r) 4 (27r) 6
(C.30)

Now

E (el" e2) 2 = 2,

E1 ,f2

2klo = 2k20 = Pho = mH, (c.31)

Therefore

42 /q.fh/ 2 2 IJol2 d3k_6(kl0 + k20 - Pho)
(2_)10 m_

1

16x (2_)5q_ h_ mH:_IJol2, (C.32)

hi is related to the Fermi coupling constant GF by h_ = m_ x 2v_G F (ref. 14, Section

22.2, eqs. (22.58), (22.70), and (22.83), pp. 676, 679, 684)

1

r = 16(2_r)5q_2V_GFm_ _X2 IJol2

= I_14 _2GF m_,X2IJol2.
8_/_3

(C.33)

We note that q-/- is the charge of the fermion in units of the electron charge. Our result
e

agrees with that in the literature. (See ref. 13, eqs. (10) and (ll), p. 95.) We note that the

sign of the imaginary part of Jo in (C.27b) is opposite to that of reference 12, equation (ll).
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However, since only [5o[ 2 entersintoquantitiesofphysicalinterest,such as F and a, therefore

thisdifferencein sign of the imaginary part of 3o isnot significant.
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Appendix D. Evaluation of certain integrals.

In this appendix, we outline the procedures involved in evaluating the integrals in (C. 14)-

(C.19).

The following integrals can be evaluated by standard methods of calculus.

_0 °° umdu M_2t+m+l(u 2 + M2)_ = Cm, l x , (D.1)

provided m is even, m > 0, l is an integer > 0, l _> _ + 1, and the coefficients Cm, t are

defined by

C ,t= .

Zx (cos0) 2t-m-2 d0 (D.2)

If l is a half-integer, (D.1) still applies with

x f0_(cos 0)21-m-2 dO. (D.3)

Using methods of complex analysis, we can show that the same formula (D.1) applies if

M is replaced by iM in (D.1).

/ dnp(p2 + M2) -a =/_°°oo dpo fo °° [161n-2d[i61 (192- 1_[2+ M2)-a f_(022 ' (D.4)

where f_(n0) denotes the surface area of the n-dimensional unit sphere. Now using (D.1), we

find

f dnp(p2 + M2)-a = f_: dpo(_l)aCn_2,a (_p2_ M2)-a+-_ £_(n022

- 2(-1)'_'!Ca_2,a Co,a_n_.! a(nO)_2 M -2a+". (D.5)
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From (D.5), it is straight forward to compute

-°_/_[/_+_/_+.___]-°
(D.6)

Now we can also evaluate

/ __ o/_(_+_;_+_)-o+_dnp p# (p2+ 2p.Q + M2) -a = 2(a-1) OQ#

= (_l)a;_ 2 (a - 1 - _) Cn-2,a-1
o_--I

x_o,o-__0__(__q_)-o+_o. (_

Using similar techniques we can evaluate

xoo__,o___o,o-e._-'_(-_-_)-°+'+_
[ °×_ +(_- Q_)-'(-o+,+_)

x (-2Q#Qv)], (D.8)

and

/ amp p2 (p2 + 2p. Q + M2)-a

n

=(-_/_(o-_- _)/o- _-_(o-_/-_
(0) Q2)-_+i+_xc._2,__2c0,___ _.-2(M2 -

[ o ],x_+_(o-_-_)(._-¢-)-'q_(_._

in which 9#z, is the metric tensor

9oo = --911= --922= --933----1, (D.IO)

and all g#v with _ # v are 0.

37



We also note the foUowing"

j_O_ u m -1 0 f0 °°(_ +_2)_ d_= -a - 1 0_/2

U m

(u 2 + M2) a-1

du

Therefore, by using (D.1), we find

m+ 1) (a- 1)-lCm,a_l •2

We can now use these results to evaluate

Using (D.12) in (D.a3), we find

Setting a = 3, and taking the limit as n --_ 4, we find

/_",.(<,_-+._)[_-Q)_+,_]-_
=/-1)½×2n_°)-_

In similar fashion we find

rt=(-.)_ (o- _-_)(o-.)-'oo-_.o-_

x_o,o-_.t-_(,_)-°+_(-Q")
=(-,)_ _c.__,oCo,o__,_?__,_(,,_)-°+_(-Q_').

(D.11)

(D.12)

(D.13)

(D.14)

(D.15)

(D.16)
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Therefore,

Finally,

/ _'_ [_1- q/2+.2]

-3

=-i2c2,3Co,__°)_'°_q_'
• .4.

_2 q,

2 _"

=2(_1)3/2c2,3Co,_a_o)_
_.2 1

2 p21"

(D.17)

(D.18)
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Appendix E. Stopping Power

Consider the reaction

ZlZ2-, Z_Z2X, (E.1)

in which X represents one or more particlesproduced in the process. Let Z1 be an incident

particle,and Z2 represent a fixed target,whose density is p (number of nuclei per unit

volume). Let _ denote the cross section for the process (E.1),and Ex the energy of the

system X. Ifwe disregard the effectdue to recoilof Z2, then by the conservation of energy,

the energy lossof ZI isequal to Ez. Consider a slabof the target Z2 of cross-sectionalarea

A and thicknessAx.

Figure E.I

The number of Z2 nucleiin thisslab ispAAx. The crosssection for an incident particle

Z 1 to collide with a Z2, producing X is given by

da

Act = pAAx "_x dEx,
(E.2)

where we assume the energy of the produced system X to be between Ex and Ex + dEx.
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Therefore the probability for this process is

Aa do.

P(Ex)dEx = _ = pax _z dEz, (E.3)

in which P(Ex) represents the probability density for the process. Therefore the total energy

loss by the incident particle Z1 per unit length is given by

dEdx - Axlim_ 0 --Axl/ EzP(Ez) dEz (E.4a)

= p Ez -_z dEx. (E.4b)

The - sign in (E.4) signifies the fact that energy is lost by Z1 in the process, so that the

change in its energy dE is negative. See ref. 16, eq (6.4), page 741.

For two-photon processes of the kind that we have considered

Ex = _1 + (E.5)

in which again we use the "natural units" for which h = 1. The cross section is given by

(2.2a). By switching the variables of integration from Wl, w2 to Wl, Ez, and using the fact

dwl dw2 = dwl dEz, (E.6)

which can be obtained from (E.5), (E.4b) can be written in the form

dE / dw I / dEx Ex F(wl, Ex- Wl)× O'T)'(Wl, Ex- U_l) (E.Ta)dx -- p -_1 Ez - wi

= p/dwiW / dw2(t_lw2 4-t_2) F(_I, _2)o'_(u)l, u)2) (E.7b)

(E.7b) is the same as (2.7).
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Fibre A.1. Electroma_net/c 5elds generated by a charge _ moving along the _-.ax/s.

53



Z I

4

f
b

f
T

FigureA.2. Photonsemittedby two collidingnuclei,viewedalongthedirectionofmotion of
the nucleiintheircenterofmomentum frame.
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Figure A.3. Cro_-sec_ional view of the collision of _'o nude/.
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F_ure B.2: First order Feynman diagram for the process 77 _ s+s--
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Fig-are C.la--b. Feymnan diagrams representing fermion cont-ribution to the process S 0 --* "fT.
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